Complex-valued Ray–Singer torsion
نویسندگان
چکیده
منابع مشابه
Complex valued Ray–Singer torsion
In the spirit of Ray and Singer we define a complex valued analytic torsion using non-selfadjoint Laplacians. We establish an anomaly formula which permits to turn this into a topological invariant. Conjecturally this analytically defined invariant computes the complex valued Reidemeister torsion, including its phase. We establish this conjecture in some non-trivial situations. Mathematics Subj...
متن کاملComplex valued Ray–Singer torsion II
In this paper we extend Witten–Helffer–Sjöstrand theory from selfadjoint Laplacians based on fiber wise Hermitian structures, to non-selfadjoint Laplacians based on fiber wise non-degenerate symmetric bilinear forms. As an application we verify, up to sign, the conjecture about the comparison of the Milnor–Turaev torsion with the complex valued analytic torsion, for odd dimensional manifolds. T...
متن کاملComplex-Valued Data Envelopment Analysis
Data Envelopment Analysis (DEA) is a nonparametric approach for measuring the relative efficiency of a decision making units consists of multiple inputs and outputs. In all standard DEA models semi positive real valued measures are assumed, while in some real cases inputs and outputs may take complex valued. The question is related to measuring efficiency in such cases. As far as we are aware, ...
متن کاملCircle-Valued Morse Theory and Reidemeister Torsion
We compute an invariant counting gradient flow lines (including closed orbits) in S-valued Morse theory, and relate it to Reidemeister torsion for manifolds with χ = 0, b1 > 0. Here we extend the results in [6] following a different approach. However, this paper is written in a self-contained manner and may be read independently of [6]. The motivation of this work is twofold: on the one hand, i...
متن کاملComplex Valued Analytic Torsion for Flat Bundles and for Holomorphic Bundles with (1,1) Connections
The work of Ray and Singer which introduced analytic torsion, a kind of determinant of the Laplacian operator in topological and holomorphic settings, is naturally generalized in both settings. The couplings are extended in a direct way in the topological setting to general flat bundles and in the holomorphic setting to bundles with (1,1) connections, which using the Newlander-Nirenberg Theorem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2007
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.03.027